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Periodic flow of thin liquid layers has been investigated with allowance for the shear stress at the liquid- 
gas interface. The results indicate that.the flow friction of two-phase systems is an important factor in 
calculating the very characteristic parameters a0, X of wave motion of a liquid film. 

Wave flow of thin liquid films has been studied in a number of interesting papers, whose results are widely used in 
the analysis of film heat and mass transfer [1-8]. In this paper the problem is analyzed by Kapitsa's method [2], as ira- 
by Bushmanov [4]. Within the limits of the approximation used, we have eliminated the shortcomings of the boundary 
conditions adopted in [4]. 

It is known that the wave flow of thin liquid layers exposed to the influence of gravity and a moving gas is de- 
scribed by the nonstationary Navier-Stokes equations. In the approximations of  the Prandtl boundary theory, these equa- 
tions take the form 

Ottx/O t .qt_ ttaOttxlOX 2ff VvOttx/Oy ._~ _ Op/p OX -~- g + ~ O~ttx/Oy ~, 

OUJOX + OVv/Oy = O. 

(1) 

(2) 

Following the method of [2], we may put Eq. (1) in the form 

(u~ - -  k) OuJOx + vuOUx/~y --= ~ Opl 90x + g t ~ 02uxldy 2. (3) 

Averaging all terms of (3) with respect to y gives 

(Ux - -  k) OWOx + vuOWOv'= - -  Op/00x + g + ~, O~u~lOv ~. (4) 

In the flow under examination, the total pressure gradient consists of a component due to the moving gas and a 
component due to surface tension forces. For thin films the pressure gradient is 

Op/Ox  = + --  o 03a /Ox  ~. 

Putting G = g - ~/p, and taking account of  (5), we reduce (4) to the form 

(u~ - -k)  OuJOx + vuOuJOg = G + ~ 03a/o Ox3 + ~ 02uJO9 ~. 

Let us specify the velocity by means of the following polynomial 

u~ = A9 ~ + B y  + C, 

where A, B, 

conditions: 

(5) 

(6) 

(7) 

and C are periodic coefficients and functions of f(x - kt). Their values are determined from the boundary 

when 9 = 0  u x = O ;  (8) 

when g = a F OuJOy - -  "~o. (9) 

Condition (9) indicates that a shear stress acts at the gas-liquid interface. Combining (8) and (9) with (7), we find 

the velocity 

ux = A (y2  _ _  2ag) + ~Co g/F. (10) 

We express A in terms of the mean velocity of  the liquid film 

a a 

u ---- S uflg/a = f (Ag ~ + % g/a - -  2Any) @/a 
o ~ 

(11) 

836 



o r  

A = - -  3u (x, t) /2a 2 (x,  t) -5 3~o/4a (x, t) p. 

Finally, after substituting (12) into (10), we obtain an expression for the velocity 

u~ -- (3%/4a ~ - -  3u/2a 2) ( f  - -  2av )  -5 % ~t/p. 

To find Vy we use the equality 

(12) 

(13) 

Y 

v~, = - - t"  (ou/Ox)dv + f (x). 
0 

(14) 

The function f(x) is equal to zero when y = 0, since Vy = 0 at the wall. Substituting into (14) the value of 8Ux/SX 
found using (13), we obtain 

v v = - -  (392/2a 2) [ ~ a  - -  u--a) - -  (ua - -  2ua )y /3a]  + "Co ay3/4~ a s. (15) 

Omitting intermediate transformations associated with finding 8Ux/0X, Vy0Ux/SY, i~Ux/Oy z with the aid of (13) 
and (15), we put (6) in the form: 

za'/p § G - -  (1/10a) [3u (3u - - u a ) -  5k (2ua - - u a ) ]  + (Zo/20p)(3~h + 

_ (16 )  

+ 4 u a - - 5 k a )  - - 3 ~ ' u / a  2 -  -c2a'a/40p + 3%,d2a~. 

In accordance with the continuity equation, 

u = u 0 [ Z - - ( Z - - 1 ) a o / a  ], Z = k/uo. (17) 

Considering waves of small amplitude, we write the layer thickness a in the form 

a = a0(1 + q)). (18) 

Taking (17) and (18) into account, we reduce (16), after lengthy transformations, the final form: 

(Zao q~/o -4- G) (1 4-q))3 + + {u~ (Z 2 -  2.4Z + 1,2) -b 

4-[(1 + qD) 3 ~ouoao/20p ] [ ( Z - - 1 ) / ( 1  -5 q o ) -  2 Z ) -  
(19 )  

- -  (T~ ao~/40F 2) (1 + q~)4 } _ 0.4u~ 2gqDq0 - -  0.2u~ 22 q0q02 - -  

- -  (3v Uo/a 2) (1 +Zq~) -5 3~o~ (1 + qD)~12ao ~ = 0. 

Assuming the amplitude of function r and its derivatives to be small quantities, we shall examine (19) and its so- 
lutions in the zeroth and first approximations. We can obtain the zeroth approximation, or absence of wave motion, from 
(19), by setting 9 and its derivatives equal to zero: 

G - -  3~ Uo/a 2 + 3 %~/2p ao = 0. (20) 

If we assume 

= N A Ptr/l ,  To = T A Ptrao/l, (21.) 

where the "minus" and "plus" signs refer, respectively, to reverse and forward flow, and where N is a proportionality 
factor, then the film thickness may be expressed by the equation 

a2o - -  3v Uo/g i1 ~ A (3/2 - -  N)], (22) 

where the "minus" and "plus" signs refer, respectively, to reverse and forward flow. If the gravity forces are much 
greater than those expended on trickling, i . e . ,  /y, >> Apt r, then we obtain the widely known formula for determining the 
layer thickness. We also obtain this formula if the proportionality factor is 3/2. 

In (19) we retain only terms containing r and its derivatives in powers not exceeding the first: 

<;a;@o 4.- 3Gcp -1- r [u -2 ( Z ~ -  2 . 4 Z +  1 . 2 ) - -  
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i . e . ,  

- -  % Uoao ( Z +  1 ) /20p - -  x~ a20/40,~ z] - -  (23) 
(cont'd) 

- -  3v uoZ~/a~ + 3 XoV~/F ao + a - -  3V uo/a~ + 3"ro~/2t~ ao : 0 .  

For existence of a steady periodic solution, the constant term and the coefficient of q must be equal to zero, 

" G - -  ~Uo Z/a2o + ~o~,'t~ a o  = O. 

With (21) taken into account, the layer thickness may be expressed as: 

a2o ----- Z v ~ / g  [1 -T A (1 - -  N)] ,  (24) 

where the "minus" and "plus" signs refer, respectively, to reverse and forward flow. If we assume, in particular, that 
the proportionality factor N equals unity, or i f / 7 ,  >> Aptr, then (24) goes over into the formula obtained by Kapitsa 
[2]. Comparing (22) and (24), we obtain 

Z = 311 ~ - A ( I  - - N ) I [ 1  -Y- A ( 3 / 2 - - N ) ] .  

With these assumptions, (23) takes the form: 

aao'~/p + ~p [u2o (Z*--  2.4Z + 1.2) - -  

- -  ZoU~a (Z + 1)/20F - -  x02 a~/4F ~] = 0. 

The stable periodic solution, according to (25), has the form 

(25) 

where the wave number is given by 

r = = sin n (x - -  kt), 

l/2 ~2  
= ~ u 0 (Z 2 - -  2 . 4 Z  + 1 . 2 ) / o a 0  - -  

- -  XoUoao 9 (Z + 1)/20Foa.o - -  ~o 2 ao 2 e/40,~% ao. 

Hence the wavelength is given by the expression: 

~, = ~z/[1--O(Z + 1)/20(Z 2 -  2.4Z + 1.2) - -  

--`92/40 (Z 2 - -  2.4 Z + 1.2)]v,, 

where ;~K = (2z~/'uo) [aa~ + 1,2)]v, with the correction of [4], and 

(26) 

,9 = t 0 ao/~ u0. (27) 

Taking (21) and (24) into account, (27) may  be written as: 

,.9 = -T A/[1 -Y- A ( 1 - -  N)]. (28) 

Thus the wavelength, in addition to its dependence on other factors revealed by Kapitsa's data, also depends on the flow 
friction of the two-phase system. It follows from (26) that the wavelength as a function of flow friction passes through 
extmma.  To determine these, the wavelength in (26) must be differentiated with respect to`9, and the result equated to 
zero. We obtain 

9e  = - - - ( Z  + 1). 

Taking (28) into account, we shall write down the value of the max imum and minimum,  respectively: for reverse flow 

and ~ r  ~rward flow 

9 m a x =  A / [ 1 - -  A ( 1 - -  N)] = Z +  1, 

3rain : ,4/[1 + A (1 - -  N)] = - -  (Z -k 1). 

The formulas obtained permit  an approximate evaluation of wavelength without any experimental  constants. Thus, 
substituting 9 max and 9 rain into (26), we obtain: 

k = LK/[1 - - ( Z +  1)s/40(Z~--2.4Z + 1.2)]v,, (29) 
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for forward flow 

k = kK/[ 1 ~ (Z ~ 1)~/40 (Z 2 - -  2.4Z ~- 1,2)] v~. (30) 

Using values of 9 e , we find the thickness of the film of liquid running off along a vertical surface in wave flow: 

for reverse flow 

a~o = Z ( Z -t- 1 ) ~ uo/Ag,  (31) 

for forward flow 

�9 ag = - -  Z ( Z - } -  1 ) ~ u J A g .  (32)  

The results indicate the special features of the wave process of liquid runoff and, in particular, show that the 

flow friction of a two-phase flow is important for the calculat ion of the parameters a 0 and X, which are very character- 

istic for the wave motion of a liquid film. These are given by (26), (81), and (82). While our analysis does not com- 

plete the solution of this very complex problem, it does indicate one possible method of examining it. 

NOTATION 

a - film thickness; ~b - gradient due to gas flow; o - surface tension at interface; r0 - constant shear stress at in-  

terface; u0 - mean flow velocity of liquid at mean cross section; a 0 - mean film thickness; a 0 ~0 - deviation from mean 

thickness at surface; X K - wavelength determined from Kapitsa's data; subscript e - extremum. 
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