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Periodic flow of thin liquid layers has been investigated with allowance for the shear stress at the liquid-

gas interface. The results indicate that the flow friction of two-phase systems is an important factor in
calculating the very characteristic parameters ag, A of wave motion of a liquid film.

Wave flow of thin liquid films has been studied in a number of interesting papers, whose results are widely used in
the analysis of film heat and mass transfer [1-8]. In this paper the problem is analyzed by Kapitsa's method [2], as im-
by Bushmanov [4]. Within the limits of the approximation used, we have eliminated the shortcomings of the boundary
conditions adopted in [4].

It is known that the wave flow of thin liquid layers exposed to the influence of gravity and a moving gas is de-
scribed by the nonstationary Navier-Stokes equations. In the approximations of the Prandtl boundary theory, these equa-
tions take the form

Ou,/0t - u,0u,/0x 4 v,0u,/0y = — Op/pdx 4 g + v O%u,/0y?, €]
0u,/0x +- dv,/dy = 0. (2)

Following the method of [2], we may put Eq. (1) in the form
(u, — k) Ou,/0x + v,0u,/O0y = — Op/p Ox + g + v 0%u,/dy’ (3)

Averaging all terms of (3) with respect to y gives

(u, — k) Ou,/Ox + v,0u,/0y = — Op/pdx + g + v 0%u,/0y>. , (4)

In the flow under examination, the total pressure gradient consists of a component due to the moving gas and a
.component due to surface tension forces. For thin films the pressure gradient is

0p/0x = -— ¢ 0®a/0x3. (5)

Putting G = g — ¥/p, and taking account of (5), we reduce (4) to the form

(u, — k) 0u,/0x + v,0u,/dy = G + o Pa/p 0x* v 0%u, /0y, (6)
Let us specify the velocity by means of the following polynomial
A=Ay2+By+C’ (N

where A, B, and C are periodic coefficients and functions of f(x — kt). Their values are determined from the boundary
conditions:

when y =0 u,=0; (8)
when y=a 0w /0y = 1, (9

Condition (9) indicates that a shear stress acts at the gas-liquid interface. Combining (8) and (9) with (7), we find
the velocity

u, = A(y2 — 2ay) + 7o y/p. (10)

We express A in terms of the mean velocity of the liquid film

u = 5 udyla = ( (Ay* + v, y/a — 2Aay) dy/a (11
§ ¢
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or
= —3u(x, $)/2a%(x, 1) + 3v,/4a(x, t)p. (12)
Finally, after substituting (12) into (10), we obtain an expression for the velocity

u, = (3t,/4a p — 3u/2a%) (y* — 2ay) + T y/p. (13)

To find v, we use the equality

y

I

14
v, —.g (Ouy/0x) dy + [ (x). (14)

0

The function f(x) is equal to zero when y = 0, since v, = 0 at the wall. Substituting into (14) the value of auX/ 0x

b
found using (13), we obtain

v, = — (3y%/2a%) [(Za — ua) — (_ﬁa — 2ua) y/3a] + Toay®/4p a’. (15

Omitting intermediate transformations associated with finding du_/9x, vyaux/ 0y, azux/ dy” with the aid of (13)
and (15), we put (6) in the form:

o dp + G — (1/10a) [3 (30 — 1) — 5k (e — ua)] + (1o/20u)(3ua +

- : _ . (16)
+ 4ua — Ska) — 3vu /a? — 2 aa/40p 4 3v,v/2ap.
In accordance with the continuity equation,
L= uy [Z—(Z—1)ay/a], Z = klu,. (17
Considering waves of small amplitude, we write the layer thickness a in the form
a=ay(l +¢) (18)
Taking (17) and (18) into account, we reduce (16), after lengthy transformations, the final form:
(oo plp + G) (1 +¢)° + @ [t (22— 24Z + 1,2) +
+ [(1+ 9 o toay/20u] [(Z — /(1 + @) —2Z) —
a9

— (12aY40p3) (1 + ) ) —0.41 Z2p@ — 0.2 Z2 g2 —
— (3vuy/a) (14 Z¢) + 3ty (1 + ¢)¥2a5p = 0.

Assuming the amplitude of function ¢ and its derivatives to be small quantities, we shall examine (19) and its so-
lutions in the zeroth and first approximations, We can obtainthe zeroth approximation, or absence of wave motion, from
(19), by setting ¢ and its derivatives equal to zero:

G — 3vuy/a2 + 35ov/2pag = 0. (20)
If we assume
Y= NAp/l, 1= TF Apyall, (21)

where the "minus" and "plus” signs refer, respectively, to reverse and forward flow, and where N is a proportionality
factor, then the film thickness may be expressed by the equation

a2 =3vu/g[1 ¥ 4 (3/2—N)], (22)

where the "minus” and "plus” signs refer, respectively, to reverse and forward flow. If the gravity forces are much
greater than those expended on trickling, i.e., ly, > Apyy, then we obtain the widely known formula for determiningthe
layer thickness. We also obtain this formula if the proportionality factor is 3/2.

In (19) we retain only terms containing ¢ and its derivatives in powers not exceeding the first:

o agplp -+ 3G - ¢ [42 (22— 2,42+ 1.9—
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— Ty tgty (Z+ 1)/20p — 12a%/40p2] — (23)
(cont'd)

— 3v uyZq/a + 3 tovqp/p ay + G — 3vuy/ad + 3tev/2p ay =0.
For existence of a steady periodic solution, the constant term and the coefficient of ¢ must be equal to zero,
‘G — vy Z/a2 -+ tov/p a = 0.
With (21) taken into account, the layer thickness may be expressed as:
a;=Zvu/g [1 T A(1—N)], (29

where the "minus” and "plus” signs refer, reépectively, to reverse and forward flow. If we assume, in particular, that
the proportionality factor N equals unity, or if Iy, > Apy,, then (24) goes over into the formula obtained by Kapitsa
[2]. Comparing (22) and (24), we obtain

Z=3[1F A(l — M1 F A(3/2——N)].
With these assumptions, (23) takes the form:

o2y ¢/p + plao (22— 2.4Z + 1.2) —

— (25)
~— ToloQ (Z + 1)/20p. — 3 a%/4p*] = 0.
The stable periodic éolution, according to (25), has the form
¢ = asinn(x — kt),
where the wave number is given by
=l (22— 2.4Z + 1.2)/e0, —
— Toltotto 0 (Z + 1)/20pcay — 2 a2 p/40u2s a.
Hence the wavelength is given by the expression:
A= Ag/ll— IZ+1)20(2*—24Z +1.2) — (26)
—3%40 (22— 2.4 Z + 1.2)]7,
where Ay = (Zﬁ/go) [eayp(Z2—2,4Z + 1,2)]/: with the correction of [4], and
» 3 =rafuu. (27
Taking (21) and (24) into account, (27) may be written as:
3=FAllF+ A(1—N). (28)

Thus the wavelength, in addition to its dependence on other factors revealed by Kapitsa's data, also depends on the flow
friction of the two-phase system. It follows from (26) that the wavelength as a function of flow friction passes through
extrema. To determine these, the wavelength in (26) must be differentiated with respect to.9, and the result equated to
zero. We obtain

Fe =—(Z +1).
Taking (28) into accouat, we shall write down the value of the maximum and minimum, respectively: for reverse flow
Omax =A/l —A(1 —N)=Z+41,
and for forward flow
Fmin= A1 +A(1—N)] = —(Z+1).

The formulas obtained permit an approximate evaluation of wavelength without any experimental constants. Thus,
substituting 3 .« and 3 min i0to (26), we obtain:

A=Ayl [1 —(Z + 1)%40(Z2 —2.4Z + 1.2)]', )
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for forward flow

A= dy/lL - (Z + 1)Y40(Z2 — 2.4Z°4 1,2)". (30

Using values of 36 , we find the thickness of the film of liquid running off along a vertical surface in wave flow:

for reverse flow
a2 =Z(Z+ 1)vu/Ag, (31)
for forward flow
a2 =—Z(Z+ 1)vu/Ag. : (32)

The results indicate the special features of the wave process of liquid runoff and, in particular, show that the
flow friction of a two-phase flow is important for the calculation of the parameters ¢, and A, which are very character-
istic for the wave motion of a liquid film. These are given by (26), (31), and (32). While our analysis does not com-
plete the solution of this very complex problem, it does indicate one possible method of examining it.

NOTATION

a — film thickness; ¥ — gradient due to gas flow; o — surface tension at interface; 79 — constant shear stress at in-
terface; ug ~ mean flow velocity of liquid at mean cross section; ¢, — mean film thickness; ¢, ¢ — deviation from mean
thickness at surface: }‘K — wavelength determined from Kapitsa's data; subscript € — extremum.
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